

Application Modernisation

KFA Management Report - Application Modernisation

The modernisation of applications has been an important topic for many years. The
technology which our industry is founded on moves quickly – but the applications that are
developed to make use of that technology rarely, if ever, keep pace. Out of date
applications can be inflexible, difficult to change and costly to maintain – but are often
critical to business.

Risks and Benefits

Risks

Any change to systems brings with it a risk – if the new code malfunctions or introduces
errors the business can suffer both financial losses and reputational damage. Mitigating that
risk requires diligent testing which itself comes at a financial cost. Errors may not solely be
system errors – changes to systems can indirectly cause human error as users get to grips
with new interfaces or ways of working.

Equally, inaction and stagnation can pose just as severe a risk to businesses. If your
competitor is selling their product through mobile devices and you are not – your business is
likely to lose market share rapidly. If you have systems that are not adequately maintained
they become difficult to support, costly to enhance and reduce the ability of the business to
adapt to changing market conditions, to do business through new channels or to release
new products. Knowledge of the business through its systems is lost – either through staff
attrition and turnover or simply forgotten through lack of use.

Benefits

An application that has been modernised is more flexible, easier to enhance and responsive
to business demands. With mobile device support, staff no longer need to be at their desk
to access applications or data – they can be wherever they need to be with access to the
information and functions, whether that’s checking stock in the warehouse or placing orders
when visiting a customer’s site.

White paper – Application Modernisation

0800 1670844 info@kfa.co.uk www.kfa.co.uk

Staff satisfaction is increased if the interfaces are modern, powerful and assist them in
completing their work – and with more and more members of staff in the workforce
accustomed to modern digital devices that means that the expectations of those staff are
higher than ever before.

Steps towards modernisation

Analyse the existing estate

Countless modernisation projects have failed because of a failure to understand the existing
application's functionality or assumptions that have been made about it. Bespoke
applications that have been built over time to meet the changing needs of the business can
often perform functions far removed from the perceived role of the system. The first step in
any modernisation project needs to be to develop a clear and comprehensive understanding
of the existing estate and the role of the application(s) within it.

Respect your investment

Too many organisations view IT as an expense and not the investment that it is. Bespoke
software is much more expensive than off the shelf packages - but the targeted deployment
of such applications creates competitive advantage and a knowledge model held in the
business logic of the code. A software product is the embodiment of the intellectual
property of the company that created it. It is the bathing baby that should not be discarded
when the water drains away.

Identify the problem

All too often modernisation projects are a solution looking for a problem. Before deciding
that the modernisation of your application is the solution, first document the problems that
you perceive that the existing system is causing the business - or is unable to solve. Only
then can it reasonably be determined that the system is in need of modernisation - and
more importantly what kind of modernisation is required.

Set clearly defined, tangible, measurable goals

The adage that "if you can't measure it, you can't manage it" has some merit in the context
of modernisation projects. Whilst there may be intangible benefits resulting from the
modernisation of an application, if you cannot set goals that are clearly defined with
tangible results that can be measured then the project is at huge risk. Such projects have a
tendency towards mission creep, overspending and running out of time. Where a project is
instigated as the solution to a clearly identified problem, rather than putting the cart before
the horse, this should be straightforward.

mailto:info@kfa.co.uk

White paper – Application Modernisation

0800 1670844 info@kfa.co.uk www.kfa.co.uk

Select a modernisation strategy

Once you know what the problem you wish to solve is, that the existing application is all or
part of that problem and that the modernisation of all or part of that application is the
solution - then you are in a position to design a modernisation strategy which is appropriate
for your needs.

There are many different approaches that can be taken to the modernisation of all or part
of an application and some of the most common are listed below as modernisation
patterns. The strategy you choose will likely comprise one or more of these patterns and will
depend on a number of factors individual to your own circumstances: the specific needs of
your project; the problems you are trying to solve; the technologies involved; the budget
available; the risk your business is willing to bear…

In our experience, regular, incremental change is the least disruptive way to modernize
systems, it’s the most manageable way to undertake the task, it reduces risk and should
always be preferred if possible.

Modernisation Patterns

There are many different ways to make your applications fit the changing needs of your
business. These can be broadly grouped into patterns – these are not always exclusive;
some applications may be modernised using combinations of more than one approach.

Retirement

The application's function has become redundant and the system can be simply
decommissioned.

Consolidate

The application's function is still required, but can be fulfilled by another application. The
original application can then be retired.

Refactor

The design of the existing code is improved incrementally. Monolithic programs are reduced
in size and scope to create smaller modules of more cohesive, more easily testable code.
Redundant code is removed. This may be required to facilitate a wrappering solution or
enable new interfaces to the code to be developed.

mailto:info@kfa.co.uk

White paper – Application Modernisation

0800 1670844 info@kfa.co.uk www.kfa.co.uk

Migrate or 'lift and shift'

The software still meets the business needs, but the hardware or OS platform is not fit for
purpose. The application code is moved to a new, compatible platform as-is.

Reface

The application remains broadly the same but is accessed via a user interface that has been
enhanced, usually with the assistance of tooling (such as IBM Host Access Transformation
Services/WebFacing), to have more modern features.

Wrapper

A new interface abstraction layer is added around the application to enable integration with
new channels or the creation of a new user interface delivered through the browser, mobile
applications – or both. This modernisation technique is frequently combined with
refactoring of applications in order to expose data access or business logic as services.

Rewrite

The function that the application performs is required, but either nothing about the current
implementation is considered to have continuing value, refactoring will be so fundamental
and extensive as to be prohibitively expensive – or refactoring will be so costly that a full
rewrite would be a better economic choice. The application is completely recoded from
scratch into a new target architecture. Note that a rewrite can still be performed
incrementally in many cases – moving functionality from the old application to the rewritten
version in phases.

Replace

The function that the application performs is required but can be completely replicated by
an off the shelf product. The product is deployed in place of the existing application.

Characteristics of Modern IBM i applications

Historically, the computational cost of activating programs was high. As a result, the best
practice was to do this as little as possible, which meant that all of the logic necessary to
perform a given task was included in a single program object. Programs with thousands and
thousands of lines of code were not uncommon. The database access, business logic and
presentation code were tightly coupled into a single executable. Logic would be reused by
copying it into other programs meaning that a change to the logic would have to replicated
wherever it had been copied.

mailto:info@kfa.co.uk

White paper – Application Modernisation

0800 1670844 info@kfa.co.uk www.kfa.co.uk

Thanks to IBM’s policy of maintaining full backwards compatibility in every release of IBM i,
many of these programs are still in service today. Whilst this underlines the safety of
investment in the platform, the modern IBM i is able to support very different ways of
architecting applications in order to meet the needs of the modern business and IT
environment.

Built in smaller blocks

Modern applications are comprised of smaller, highly cohesive, loosely coupled functions. A
function has a clearly defined task which is reflected in its name. In IBM i applications this
means that code is written using the full capabilities of the ILE environment. Procedures are
written into service programs, with program objects themselves acting as workflow
controllers.

Underpinned by SQL

Modern IBM i applications use SQL to both define and access data. The days of defining
databases with DDS are – or at least should be – gone. The modern DB2 database has vast
capabilities which can only be utilised when databases are defined with SQL.

Using SQL to access data not only improves performance and adds functionality – it also
removes the dreaded “Level Check” error and the need to recompile programs when tables
change.

At V7R3, RPG programs can pass SQL results sets between them meaning that the same
data access program can easily be consumed both as a native RPG program and a stored
procedure.

Loosely coupled

Unlike most languages, RPG has native access to both the database and user interface
available without requiring the use of a library or API – JDBC is required for Java to access
databases for example. This gives RPG many advantages in performance and function –at
the expense of good design. The historic RPG program is likely to tightly couple the business
logic to both the database and the presentation layer – be that a 5250 terminal display or a
printed report. That valuable business logic cannot then be reused elsewhere without copy
and pasting it into the source and cannot be made available to other systems. A modern
application design divides the application into different tiers with distinct responsibilities –
e.g. presentation, data access, business logic, process control are common tiers or layers.
Calls are made between the tiers, but they do not access the resources that the other tiers
manage directly – presentation layer code will not directly access the database and vice
versa.

mailto:info@kfa.co.uk

White paper – Application Modernisation

0800 1670844 info@kfa.co.uk www.kfa.co.uk

Tested automatically

When code is written in smaller, discrete blocks with well-defined inputs and outputs it then
becomes much easier to test than the monolithic programs of the past. Unit tests of these
functions can be automated which enables suites of regression tests to be performed
whenever code is updated to ensure that software continues to function as expected.

Coded verbosely

RPG is now fully free format with the ability to have long variable names, procedure names
and database column names – all of which mean that code can be written in syntactically
expressive ways which bring it ever closer to natural language and make software more and
more self-documenting.

Built automatically

The disadvantage of having smaller, discrete blocks of code is that the build process
becomes more complex. In the IBM i sphere, a suite of programs may have dependencies on
multiple service programs and these may need to be compiled and linked in a particular
order. Assistance is needed to ensure that the software is built in the same way each time,
with the same settings and the necessary dependencies fulfilled. Automated builds with tool
support help manage this process and ensure that errors do not arise as a result of missing
dependencies or incorrect compilation settings.

Founded on open source

IBM has taken huge strategic leaps to enable more and more open source code to run on
the IBM i platform. Languages like PHP, Python, Ruby and Node.js all now have native
implementations on the server – and it’s been made easier and easier to compile and build
open source projects to run on IBM i. With the Java 8 JVM that also enables the use of any
language that will run in the JVM, technologies like Scala, Kotlin, Clojure et al can be
leveraged on the modern IBM i server. In the front end, whether it’s a web application using
a CSS framework like Bootstrap or LESS, JavaScript frameworks like React.js, AngularJS or
JQuery, or a mobile device framework like Ionic – open source software is enabling us to
deliver the most modern of applications to business.

Integrated with API interfaces

Our key business functions such as creating orders, generating invoices or registering
customer accounts need to be accessed from all sorts of different channels. We’ll have the
main user interface to the application of course – and then a website, possibly mobile
devices; the business may sell its products through third party auction sites or portals like
eBay and Amazon – but we don’t want to reproduce the business logic to create and fulfil
our orders for each channel.

mailto:info@kfa.co.uk

White paper – Application Modernisation

0800 1670844 info@kfa.co.uk www.kfa.co.uk

By coding the business logic in a discrete unit that is not coupled to any given interface we
can then expose it via an API that these interfaces can consume – so no matter where the
order comes from or how the customer registers with us the same logic will always be used
and when the time comes to maintain that code it’s only done in one place – whether it’s
called from a local user, initiated via messaging middleware or a web service.

Developed with modern tools

The old tools for IBM i application development are no longer up to the job and IBM have
stopped maintaining them. When code is written in smaller blocks, with expressive free-
format syntax, a modern development environment is needed to allow developers to see
more of the source code at once, to quickly read, understand and move between source
files and assist them in being more and more productive. The modern RPG application is
developed in Rational Developer for i – which also allows tooling to be added on for many of

the other languages that are now available on the system. A full-stack developer can code
both an RPG back-end and the front end of an application in the same toolkit – whether that
front end is Java, PHP, AngularJS or pretty much any technology they need to use.

Presented with a modern user interface

Whether delivered via the browser or mobile devices, the workforce is changing and
maintaining staff satisfaction and productivity requires a modern interface to our business
applications. Whilst the presentation code for this executes locally on the user’s device, the
IBM i can deliver this code to them and provide the same high-performance, highly scalable,
ultra-reliable back-end service as this platform and its predecessors always have.

mailto:info@kfa.co.uk

